Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geophys Res Lett ; 49(23): e2022GL099211, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37034393

RESUMO

During the Juno Mission's encounter with Ganymede on 7 June 2021, the Juno camera (JunoCam) acquired four images of Ganymede in color. These images covered one-sixth of Ganymede at scales from 840 m to ∼4 km/pixel. Most of this area was only previously imaged by Voyager 1 in 1979, at lower spatial resolution and poorer image quality. No changes were observed over this area of Ganymede in the 42 years since Voyager. JunoCam provided overlapping coverage, from which we developed a digital elevation model of the best-resolved area. A 3 km high dome at the subjovian point was confirmed, 450 km by 750 km. We used the JunoCam images to refine the geologic map of Ganymede in eastern Perrine Regio.

2.
Space Sci Rev ; 217(2): 29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33678912

RESUMO

The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm ( 25.5 ∘ × 19.1 ∘ FOV ) to 110 mm ( 6.2 ∘ × 4.2 ∘ FOV ) and will acquire data at pixel scales of 148-540 µm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover's mast with a stereo baseline of 24.3 ± 0.1  cm and a toe-in angle of 1.17 ± 0.03 ∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600 × 1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors' Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26 t h and May 9 t h , 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be < 10 % . Image quality, measured via the amplitude of the Modulation Transfer Function (MTF) at Nyquist sampling (0.35 line pairs per pixel), shows MTF Nyquist = 0.26 - 0.50 across all zoom, focus, and filter positions, exceeding the > 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11214-021-00795-x.

3.
Space Sci Rev ; 217(1): 24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33612866

RESUMO

Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 µrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 µrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.

4.
Space Sci Rev ; 216(8): 137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268910

RESUMO

The Mars 2020 Perseverance rover is equipped with a next-generation engineering camera imaging system that represents an upgrade over previous Mars rover missions. These upgrades will improve the operational capabilities of the rover with an emphasis on drive planning, robotic arm operation, instrument operations, sample caching activities, and documentation of key events during entry, descent, and landing (EDL). There are a total of 16 cameras in the Perseverance engineering imaging system, including 9 cameras for surface operations and 7 cameras for EDL documentation. There are 3 types of cameras designed for surface operations: Navigation cameras (Navcams, quantity 2), Hazard Avoidance Cameras (Hazcams, quantity 6), and Cachecam (quantity 1). The Navcams will acquire color stereo images of the surface with a 96 ∘ × 73 ∘ field of view at 0.33 mrad/pixel. The Hazcams will acquire color stereo images of the surface with a 136 ∘ × 102 ∘ at 0.46 mrad/pixel. The Cachecam, a new camera type, will acquire images of Martian material inside the sample tubes during caching operations at a spatial scale of 12.5 microns/pixel. There are 5 types of EDL documentation cameras: The Parachute Uplook Cameras (PUCs, quantity 3), the Descent stage Downlook Camera (DDC, quantity 1), the Rover Uplook Camera (RUC, quantity 1), the Rover Descent Camera (RDC, quantity 1), and the Lander Vision System (LVS) Camera (LCAM, quantity 1). The PUCs are mounted on the parachute support structure and will acquire video of the parachute deployment event as part of a system to characterize parachute performance. The DDC is attached to the descent stage and pointed downward, it will characterize vehicle dynamics by capturing video of the rover as it descends from the skycrane. The rover-mounted RUC, attached to the rover and looking upward, will capture similar video of the skycrane from the vantage point of the rover and will also acquire video of the descent stage flyaway event. The RDC, attached to the rover and looking downward, will document plume dynamics by imaging the Martian surface before, during, and after rover touchdown. The LCAM, mounted to the bottom of the rover chassis and pointed downward, will acquire 90 ∘ × 90 ∘ FOV images during the parachute descent phase of EDL as input to an onboard map localization by the Lander Vision System (LVS). The rover also carries a microphone, mounted externally on the rover chassis, to capture acoustic signatures during and after EDL. The Perseverance rover launched from Earth on July 30th, 2020, and touchdown on Mars is scheduled for February 18th, 2021.

5.
Science ; 294(5549): 2146-8, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11768358

RESUMO

High-resolution images of the south polar residual cap of Mars acquired in 1999 and 2001 show changes in the configuration of pits, intervening ridges, and isolated mounds. Escarpments have retreated 1 to 3 meters in 1 martian year, changes that are an order of magnitude larger than can be explained by the sublimation of water ice, but close to what is expected for sublimation of carbon dioxide ice. These observations support a 35-year-old conjecture that Mars has a large surface reservoir of solid carbon dioxide. The erosion implies that this reservoir is not in equilibrium with the present environment and that global climate change is occurring on Mars.


Assuntos
Dióxido de Carbono , Gelo-Seco , Marte , Atmosfera , Meio Ambiente Extraterreno , Água
6.
Science ; 279(5357): 1681-5, 1998 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-9497280

RESUMO

High-resolution images of the martian surface at scales of a few meters show ubiquitous erosional and depositional eolian landforms. Dunes, sandsheets, and drifts are prevalent and exhibit a range of morphology, composition (inferred from albedo), and age (as seen in occurrences of different dune orientations at the same location). Steep walls of topographic depressions such as canyons, valleys, and impact craters show the martian crust to be stratified at scales of a few tens of meters. The south polar layered terrain and superposed permanent ice cap display diverse surface textures that may reflect the complex interplay of volatile and non-volatile components. Low resolution regional views of the planet provide synoptic observations of polar cap retreat, condensate clouds, and the lifecycle of local and regional dust storms.


Assuntos
Meio Ambiente Extraterreno , Marte , Dióxido de Carbono , Gelo , Astronave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...